Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Electroanalysis ; 35(4):1-8, 2023.
Article in English | Academic Search Complete | ID: covidwho-2303481

ABSTRACT

Herein, we have developed highly sensitive and selective non‐enzymatic bioinspired polydopamine derived nitrogen rich carbon (NC) coated bimetallic zeolitic imidazolate framework (BM‐ZIF) electrochemical sensor via simple hydrothermal approach for monitoring adrenaline (AD) from COVID‐19 quarantined person blood and pharmaceutical sample. The designed NC‐BM‐ZIF electrode shows excellent sensitive and selective performance towards AD monitoring with detection limit (LOD) of 0.01 nM and 0.1931 μA/nM/cm2 sensitivity over a wide linear range of 50–1625 nM. To the best of our knowledge, this is the first study of using of NC‐BM‐ZIF electrode for the electrochemical sensing of AD from quarantined person blood and pharmaceutical sample. [ FROM AUTHOR] Copyright of Electroanalysis is the property of John Wiley & Sons, Inc. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

2.
RSC advances ; 12(40):26390-26399, 2022.
Article in English | EuropePMC | ID: covidwho-2084146

ABSTRACT

Several neurological disorders, including Parkinson's disease, schizophrenia, human immunodeficiency virus infection, and restless leg syndrome, majorly result from disruption in the dopamine (DA) level. Thus, useful information about the treatment and prevention of various genetic majorly mental health problems can be obtained through precise and real-time monitoring of DA. Herein, we report the fabrication of novel N-rich carbon-coated Au nanoparticles (NC@Au-NPs) by deriving from melamine-crosslinked citrate-stabilized Au NPs. NC@Au-NPs offer fast electro-oxidation efficacy towards DA, because of strong electrostatic attraction between negatively charged NC@Au-NPs and positively charged DA. The catalytic efficacy and shelf life of the designed system were further boosted by applying a mixture of polydopamine (PDA) and benzimidazolium-1-acetate ionic liquid (IL) as a sandwich between the working electrode surface (graphitic pencil electrode: GPE) and the designed nanohybrid NC@Au-NPs as a redox mediator. The results indicate that the designed novel NC@Au/PDA–IL/GPE exhibits excellent sensitivity, selectivity, and reproducibility over a wide linear range (50–1000 nm) and a low detection limit of 0.002 μM ± 0.001 as well. The developed sensor was successfully applied to monitor DA in the blood of COVID-19 quarantined patients and pharmaceutical samples with high accuracy, thus suggesting a powerful tool for the diagnosis of mental problems. Several neurological disorders, including Parkinson's disease, schizophrenia, human immunodeficiency virus infection, and restless leg syndrome, majorly result from disruption in the dopamine (DA) level.

3.
RSC Adv ; 12(40): 26390-26399, 2022 Sep 12.
Article in English | MEDLINE | ID: covidwho-2042350

ABSTRACT

Several neurological disorders, including Parkinson's disease, schizophrenia, human immunodeficiency virus infection, and restless leg syndrome, majorly result from disruption in the dopamine (DA) level. Thus, useful information about the treatment and prevention of various genetic majorly mental health problems can be obtained through precise and real-time monitoring of DA. Herein, we report the fabrication of novel N-rich carbon-coated Au nanoparticles (NC@Au-NPs) by deriving from melamine-crosslinked citrate-stabilized Au NPs. NC@Au-NPs offer fast electro-oxidation efficacy towards DA, because of strong electrostatic attraction between negatively charged NC@Au-NPs and positively charged DA. The catalytic efficacy and shelf life of the designed system were further boosted by applying a mixture of polydopamine (PDA) and benzimidazolium-1-acetate ionic liquid (IL) as a sandwich between the working electrode surface (graphitic pencil electrode: GPE) and the designed nanohybrid NC@Au-NPs as a redox mediator. The results indicate that the designed novel NC@Au/PDA-IL/GPE exhibits excellent sensitivity, selectivity, and reproducibility over a wide linear range (50-1000 nm) and a low detection limit of 0.002 µM ± 0.001 as well. The developed sensor was successfully applied to monitor DA in the blood of COVID-19 quarantined patients and pharmaceutical samples with high accuracy, thus suggesting a powerful tool for the diagnosis of mental problems.

SELECTION OF CITATIONS
SEARCH DETAIL